DCF94280-E8F7-F166-A62F886D097067AC
DCFBE660-C8A8-F3F9-09D0716C5C541EB0

Physics

A concentration in physics consists of 10 courses: 190, 195, 290, 295, 390, 550 and four other courses chosen in consultation with an advisor who is a member of the physics faculty. Normally at least one of the electives will be selected from physics courses at the 300-level or above. Students who wish to prepare for graduate school in physics or engineering should choose electives from physics courses at the 300-level and above. Students with other interests may, in consultation with their advisor, select up to two electives from other science departments. Such courses should support interdisciplinary interests or career goals. Normally 390 is taken in the spring semester of the junior year in preparation for the research project undertaken in 550. Honors in physics requires outstanding work in the senior research project.

In the first year, prospective concentrators should take 190 and 195, and differential and integral calculus (Mathematics 113 and 115). If the Mathematics Department grants advanced placement, the student may wish to take more advanced calculus, Linear Algebra, or Differential Equations. Physics 290 and 295 should be taken in the second year. During the spring of the second year, we strongly recommend taking one course from Electronics, Condensed Matter, or General Relativity. Other options should be discussed with a member of the physics faculty. Students who wish to major in physics but who have taken either 100-105 or 200-205, or who wish to begin the major belatedly should consult with the department chair. Students with advanced placement in physics should consult with a member of the department before registering for a physics class.

A minor in physics consists of five courses: 190, 195, 290 or 295, and two other physics courses. Alternatively, one can complete the minor with 100-105 or 200-205, plus three other physics courses, of which one must be at the 200 level or above. A minor in astronomy consists of five courses: a 2-course introductory sequence (190-195, 100-105, or 200-205), 290, 160 and either 330 or an independent study in astronomy. A student who majors in physics may not minor in astronomy.

Students interested in the 3-2, 3-1-1-1, or 4-2 engineering programs affiliating Hamilton with engineering schools should take 190, 195, and calculus (or linear algebra if mathematics placement so warrants) in their first year. There are many possible options in engineering programs, and because of their complexity beyond the first year, interested students should consult the engineering advisor, Professor Millet. This is also the case for those who have taken 100-105 or 200-205 and have then become interested in engineering.

Juniors or seniors without prior courses in the department may enroll in 100, 120, 135, 160, 200 and 245.

100F Survey of Physics I.
The first semester of a year-long sequence (100-105) for pre-med students and other scientists who require a year of physics. Topics include mechanics, fluids and thermodynamics. Emphasis on applications of physics in medicine and in other sciences. Three hours of lecture and three hours of laboratory. (Quantitative and Symbolic Reasoning.) Prerequisite, knowledge of algebra and trigonometry. D Bunk.

105S Survey of Physics II.
The second semester of a year-long sequence (100-105) for pre-med students and other scientists who require a year of physics. Topics include electricity and magnetism, optics, atomic physics and nuclear physics. Emphasis on applications of physics in medicine and in other sciences. (Quantitative and Symbolic Reasoning.) Prerequisite, 100 or 190. Three hours of class and three hours of laboratory. Knowledge of algebra and trigonometry required. P Millet.

[120S] How Things Work.
A few basic physics principles can explain many common devices such as car engines, TVs, refrigerators, airplanes and eyeglasses, and some not-so-common devices such as atomic bombs and lasers. This course qualitatively teaches basic physics concepts with the aim of demystifying technology. A conceptual introduction to physics where all the examples come from your experience. (Quantitative and Symbolic Reasoning.) Maximum enrollment, 45.

[135] Spacetime and the Quantum World.
A study of two fundamental developments in modern physics — quantum theory and relativity. Drawing on the quantum mechanics of spin and spacetime diagrams, we gain an overview of some of the more thought-provoking aspects of contemporary physics. Breaking from tradition, this is not a historical survey but instead focuses on the fundamental nature of these two developments, as well as the role of observation in modern physical theory. (Quantitative and Symbolic Reasoning.) Comfort with simple algebra and geometry helpful.

More information ...

136S Physics and Art.
This course is a survey of some of the interesting ways in which fine art intersects math and physics. The curriculum consists of six topics in which some juxtaposition of physics and art is present; in some cases physics is relevant to the context of the art, in some case to the content of the art, and in some cases, both. We begin with some of the earliest works of art and proceed chronologically, more specifically we will study: cave paintings and radiocarbon dating, the Archimedes palimpsest and imaging techniques, tiling patterns seen throughout the Islamic world and their relation to quasicrystals and Penrose patterns, Renaissance paintings and the Hockney-Falco hypothesis, the influence on modern/abstract art from the early-mid 20th century by quantum physics and general relativity, and the drip paintings of Jackson Pollock and their connection to chaotic motion and fractals. (Quantitative and Symbolic Reasoning.) Familiarity with algebra and calculus recommended. Katherine Jones-Smith.

[140] Light and the Laser.
Introduction to the fundamental properties of light, including wave behavior, reflection, refraction, color, polarization and the optical processes of absorption and emission. Emphasis on developing an understanding of the laser – how it works and why it is different from conventional light sources. (Quantitative and Symbolic Reasoning.) Prerequisite, familiarity with pre-calculus mathematics. Three hours of class plus some laboratory work. Maximum enrollment, 20.

160F Introduction to Astronomy.
A description of the universe, starting with the appearance and organization of the solar system and working outward. Development of the heliocentric view. Observational deduction of properties of stars. Stellar evolution and its relation to pulsars and black holes. Galaxies and the structure and history of the universe. (Quantitative and Symbolic Reasoning.) Three hours of class. P Millet.

More information ...

[175F] The Physics of Musical Sound.
An exploration of the physics that underlies the production of musical sounds. Covers issues ranging from the nature of musical sound, units, some physical principles, theory of wave propagation and mode formation, physical mechanisms of how instrument families work and their implications for musical use of those families, acoustics of halls, digital simulations of musical instruments and performance spaces. Algebra will be used. Four hours of class/laboratory per week. May count toward a concentration in physics. (Quantitative and Symbolic Reasoning.) (Same as Music 175.)

190F The Mechanical Universe.
The first semester of a sequence of physics courses for students interested in physical sciences, math or engineering. Normally the first course for students who plan to major or minor in physics. Introduction to principles governing the motion of a particle and of systems of particles. Kinematics and dynamics; energy, linear momentum, angular momentum and conservation laws. Introduction to the laws of special relativity. (Quantitative and Symbolic Reasoning.) Prerequisite, Calculus I (may be taken concurrently). Three hours of class and three hours of laboratory. Silversmith.

More information ...

195S Waves and Fields.
The physics of oscillations, waves and fields. Topics include simple harmonic motion, fluids, sound, electric and magnetic fields, light, optics and interference phenomena. Emphasizes the use of calculus as a tool to describe and analyze the physical world. Three hours of class and three hours of laboratory. (Quantitative and Symbolic Reasoning.) Prerequisite, 190 or 200 and Mathematics 116 (may be taken concurrently). K Jones-Smith.

More information ...

200F Physics I.
The first semester of a year-long calculus-based sequence (200-205) for scientists and pre-med students who require a year of physics. Topics include Newtonian mechanics, conservation laws, fluids, kinetic theory and thermodynamics. Three hours of lecture and three hours of laboratory. (Quantitative and Symbolic Reasoning.) Prerequisite, Mathematics 116 or equivalent. Not open to students who have taken 100 or 190. D Bunk.

More information ...

205S Physics II.
The second semester of a year-long sequence (200-205) for pre-med students and other scientists who require a year of physics. Topics include electricity and magnetism, optics, relativity, atomic physics and nuclear physics. Three hours of lecture and three hours of laboratory. (Quantitative and Symbolic Reasoning.) Prerequisite, Physics 200; Math 116. D Bunk.

245S Electronics and Computers.
Hands-on introduction to the concepts and devices of electronics. Study of analog and digital circuits, computer architecture, assembler programming and computer interfacing. (Quantitative and Symbolic Reasoning.) Six hours of laboratory. Maximum enrollment, 20. Collett.

290F Quantum Physics.
Wave-particle duality, the nuclear atom, the development of Schrödinger’s wave mechanics and the quantum theory of atoms. Three hours of class and three hours of laboratory. (Quantitative and Symbolic Reasoning.) Prerequisite, 195 or 105 or 205, and Mathematics 116. B Collett.

295S Electromagnetism.
Introduction to the mathematical description of the electric and magnetic fields, their sources and their interactions with matter. Exploration of Maxwell’s laws with emphasis on the relationship between the physics and the mathematics needed to describe it. Three hours of class. Prerequisite, 290. Normally taken concurrently with 245. S Major.

More information ...

298F,S Physics Research.
Independent work on a research project under supervision of a faculty member. Prerequisite, Consent of instructor. May be repeated for credit, but not counted toward concentration requirements. Students may count up to a total of one credit of Physics Research toward graduation. One-quarter, one-half, or one credit per semester. Credit/No Credit only. The Department.

320S Topics in Mathematical Physics.
A study of mathematical methods and their use in investigating physical systems. Topics may include vector calculus, ordinary differential equations, special functions, partial differential equations, integral transforms, calculus of complex functions, numerical methods, tensor analysis, groups and other topics of current theoretical interest. (Quantitative and Symbolic Reasoning.) Prerequisite, Math 224 and (either Physics 295 or Math 216), or permission of instructor. Normally offered on alternate years. S Major.

More information ...

[325S] General Relativity.
A study of the physics of space-time geometry including Einstein’s special and general theories of relativity with applications to black holes and cosmology. Prerequisite, Physics 290 or permission of the instructor. (Quantitative and Symbolic Reasoning.) Normally offered on alternate years.

[330] Topics in Astrophysics.
Topics may include fundamentals of stellar structure and evolution, the black hole and the curvature of space-time, the structure of galaxies and galactic dynamics, theories of the structure and evolution of the universe. (Quantitative and Symbolic Reasoning.) Prerequisite, 290 or 295.

[340S] Topics in Quantum Physics.
Exploration of topics in contemporary physics using the tools of quantum mechanics developed in 290. Topics may include multi-electron atoms, molecules, solid state physics, lasers and quantum optics, nuclear physics, nuclear magnetic resonance, surface physics and particle physics. (Quantitative and Symbolic Reasoning.) Prerequisite, 290. Normally offered on alternate years.

350F Classical Mechanics.
Principles of classical mechanics, including oscillations, nonlinear dynamics, dynamics of systems of particles, non-inertial reference frames, Hamilton and Lagrangian mechanics, celestial mechanics, rigid body motion and coupled oscillations. (Quantitative and Symbolic Reasoning.) Prerequisite, 295 or consent of instructor. K Jones-Smith.

More information ...

[360F] Scientific Computing in Fortran.
Study of the computational methods for solving advanced problems in the physical sciences using Fortran in a Unix environment. Projects may include data fitting, solution of systems of ordinary differential equations and solutions of partial differential equations. Prerequisite, knowledge of a programming language and 295 or Mathematics 235 or consent of instructor.

370F Thermodynamics and Statistical Physics.
Properties of large-scale systems in terms of a statistical treatment of the motions, interactions and energy levels of particles. Basic probability concepts and the principles of statistical mechanics. Explanation of thermal equilibrium, heat, work and the laws of thermodynamics. Application to various physical systems. (Quantitative and Symbolic Reasoning.) Prerequisite, 290. P Millet.

More information ...

[375S] Condensed Matter.
An introductory study of mechanical, thermal, electronic, and optical properties of the solid state of matter. Fundamental properties of crystalline materials are related to mechanical and quantum phenomena. Behavior of electrons in periodic potentials: insulators, conductors, and semiconductors. Examination of various practical devices such as the diode, transistors, light emitting diodes, and solid state lasers. Prerequisite, Physics 290.

More information ...

390S Research Seminar.
A series of research projects stressing the integration of theory and experiment. Emphasis on scientific writing, formal oral presentations, use of the current physics literature. (Writing-intensive.) (Quantitative and Symbolic Reasoning.) (Oral Presentations.) Prerequisite, 290. Maximum enrollment, 20. The Department.

More information ...

[450S] Quantum Theory Seminar.
An exploration of the mathematical tools and foundations of quantum mechanics. Topics include angular momentum, spin, measurement, bound states and perturbation theory. (Quantitative and Symbolic Reasoning.) (Oral Presentations.) Prerequisite, 350. Offered in alternate years. Maximum enrollment, 12.

More information ...

[460S] Vibrations and Waves.
Topics drawn from mechanics, hydrodynamics, electrodynamics, acoustics and optics. Prerequisite, 295 and 350.

480F Electromagnetic Theory.
Intensive study of Maxwell’s equations in both differential and integral form; electrostatics and electro-dynamics; special relativity; and the transformation of electromagnetic fields. Introduction to electromagnetic waves and dielectric and magnetic materials. (Quantitative and Symbolic Reasoning.) Prerequisite, 295 or consent of instructor. Collett.

550F,S Senior Research Project.
Independent research in collaboration with faculty supervisor. Students will give a series of formal oral presentations about their research and will write a comprehensive thesis. (Oral Presentations.) Open to senior concentrators or to others with consent of instructor. The Department.

551S Senior Research.
Research carried out in collaboration with a faculty member. Includes written and oral presentation. Prerequisite, 550. Silversmith.

(from the Hamilton Course Catalogue)

Cupola