Mathematics Placement Questionnaire

- 1) Please fill out the Questionnaire below.
- 2) Please take the appropriate Placement Exam and record your answers on the answer key.
- 3) Please return both sheets to:

The Office of the Registrar Hamilton College 198 College Hill Road Clinton, New York 13323

Name		
High school		
Mathematics Courses You Have Taken	Year of HS graduation	
Descriptive Math Course Title(s)	Course Grade(s)	
9th grade		
10th grade		
1 Ith grade	(F	(1)
12th grade	(Expec	tea)
Special Notes:		
Calculus Information		
Does your HS offer a full-year AP Calculus course?	Did you take it?	
Does your HS offer a full-year non-AP Calculus course?	Did you take it?	
AB Exam ScoreBC Exa (If you have not yet received your score, please put a "?" of and tell us your score, by letter or e-mail, as soon as you r IF you took an AP course but not the exam, please state why	am Score on the AB or the BC line receive it.)	
Self-Assessment		
How do YOU assess your mathematics preparation: Not prepared to start Calculus Prepared to start Calculus I	_Prepared to start Calculus II _Prepared to start at a higher leve	el
How likely are you to take a math course during your first year at Ha Very LikelyMaybe	amilton Unlikely	
Career Interests (it's OK to be undecided)		
Possible majors or gross of concentration		

Exam I 25 min. time limit

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	

40 m	in. time limi	t
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		

18

19

20

Exam II

21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	

Do not write in this space

Name_____

1.	The value(s) of x for which $ x - 2 = 5$.					
	(A) 7 only	(B) 7 and –7	(C) -3 and 7	(D) -3 only		
2.	Which of the following is equivalent to $2x + 4 \le 5x - 1$?					
	(A) $x > \frac{5}{3}$	(B) $x < \frac{5}{3}$	(C) $x < -\frac{5}{3}$	(D) $x > -\frac{5}{3}$		
3.	$(xy^{-2})^{-3} = ?$					
	(A) $\frac{1}{x^3y^6}$	(B) $\frac{y^5}{x^3}$	(C) $\frac{y^6}{x^3}$	(D) x y ⁶		
4.	Which of the followin	g could be the equation f	for the graph below?			
	(A) $y = x^2 + 3x$	(B) $y = 3x - x^2$	(C) $y = x^2 - 3x$	(D) $y = -3x - x^2$		
5.	The length of the hypotenuse in a "30-60-90" right triangle is 12. How long is the longer leg of the triangle?					
	(A) 6	(B) 6 √ 3	(C) $\frac{12}{\sqrt{3}}$	(D) 6 √ 2		
6.	If $f(x) = \frac{1}{x-1}$ and $g(x)$	$f = x^2$, then g(f(3)) = ?				
	(A) $\frac{1}{4}$	(B) $\frac{1}{8}$	(C) 9	(D) $\frac{1}{2}$		
7.	Which of the following best represents the graph for $y = \sin(2x)$ on the interval [0,2 π]?					
	(A) 2π	(B) 2π	(C)	(D) 2π		
8.	$(2xy^2)^3 =$					
	(A) $8x^3y^5$	(B) $2x^{3}y^{6}$	(C) $8x^3y^6$	(D) $2x^{3}y^{5}$		

(D)

Х

1

(B)

11. Determine a value for A so both x = 2 and x = -1 are solutions of the equation $\frac{x^3 - x}{x+1} + 1 = A$. (A) 3 (B) -2 (C) 1 (D) Impossible

(C)

9.

10.

(A)

17.	For $x > 0$, $\log\left(\frac{x+2}{x}\right) =$?					
	(A) $\frac{\log(x+2)}{\log(x)}$	(B)	log(2)	(C)	$\log(1) + \log\left(\frac{2}{x}\right)$	(D)	$\log(x + 2) - \log(x)$
18.	The degree equivalent o	of $\frac{2\pi}{3}$	radians is:				
	(A) 150°	(B)	60°	(C)	120°	(D)	240°
19.	$1 + \tan^2(x) = ?$						
	(A) $\cot^2(\mathbf{x})$	(B)	$\frac{1+\sin^2(x)}{\cos^2(x)}$	(C)	$\sec^2(\mathbf{x})$	(D)	csc ² (x)
20.	Mary sold a computer for price would she have so	or \$2′ ld it i	73, thereby making a f instead her profit h	. 30% 1ad be	profit on the cost of een 10%?	f the o	computer. At what
	(A) \$231	(B)	\$221	(C)	\$210	(D)	\$218.40
21.	A rectangular field is to requires no fencing). If what is a formula for th	be ac 200 i e area	ljacent to a river and meters of fencing is u A of the field?	is to 1sed a	have fencing on three nd if the side paralle	ee side el to t	es (the side on the river he river is x meters long, x = x(200 - x)
	(A) $A = x(200-x)$	(B)	$A = x^2 - 200$	(C)	$A = \frac{1}{2(200 - x)}$	(D)	$A = \frac{1}{2}$
22.	An apple orchard now l planted, the average yiel is a formula for the tota	nas 30 ld per l nun) trees, and the avera tree is reduced by 10 hber of apples produc	ge yie 0 app ced?	ld is 400 apples per les. If y is the numb	tree. er of	For each additional tree new trees planted, what
	(A) $T = 400y - 10y^2$ (C) $T = 12000 - 10y$			(B) (D)	T = 12000 + 100y - T = 300y + 10y2	10y ²	
23.	$\frac{\left(\frac{x}{y} - \frac{y}{x}\right)}{\left(\frac{x - y}{y}\right)} = ?$						
	(A) $\frac{x^3y^3}{xy^2}$	(B)	$-\frac{1}{x}$	(C)	$\frac{x+y}{x}$	(D)	None of these.
24.	If x is an acute angle and	d sin(x = $\frac{3}{5}$ then cot(x) =	?			
	(A) $\frac{3}{4}$	(B)	$\frac{4}{3}$	(C)	$\frac{4}{5}$	(D)	$\frac{5}{4}$

Exam II

25. Which of the following is <u>NOT</u> the graph of a function y = f(x)?

	(A) y x	(B)	(C) y	(D)	
26.	Which of the following	g best represents the grap	h of the line $4x + 3y = 12$?		
27.	Which of the following	g is the equation of a line	e perpendicular to a line w	ith slope 3/4?	
	(A) $y = \left(-\frac{4}{3}\right) x$	(B) $y = \left(\frac{3}{4}\right)x$	(C) $y = \left(\frac{4}{3}\right)x$	(D) $y = \left(-\frac{3}{4}\right)x$	
28.	The roots of $3x^2 - 5x - $. 4 = 0 are:			
	(A) $\frac{5 \pm \sqrt{73}}{6}$	(B) $\frac{5 \pm \sqrt{23}}{3}$	(C) $\frac{5 \pm \sqrt{73}}{3}$	(D) $\frac{5 \pm \sqrt{48}}{6}$	
29.	If $f(x) = x^2$, then $f(x + h)$.) =			
	(A) $x^2 + h$	(B) $x^2 + h^2$	(C) $x^2 + 2xh + h^2$	(D) x ²	
30.	The midpoint of the line segment which joins the points $(-3, 8)$ and $(5, 2)$ is				
	(A) (1, -3)	(B) (2, 4)	(C) (1, 5)	(D) (4, 5)	
31.	A hitchhiker walks 4 n travels 24 miles per ho hours did he walk?	niles per hour. After wall ur. In 10 hours of walkii	king for a time he catches and riding he covers 17	a ride on a truck which 0 miles. For how many	
	(A) 4 hours	(B) 7/2 hours	(C) 5/4 hours	(D) 2 hours	
32.	A square sheet of tin 12 inches on a side is to be used to make an open-top box by cutting a small square of tin from each corner and bending up the sides. If the small square cutouts are x inches on a side, what is a formula for the volume of the resulting box?				
	(A) $V = x^2(12 - x)$ (C) $V = x(12 - 2x)^2$		(B) $V = x(12 - x)^2$ (D) $V = 2x(12 - x)^2$		
33.	Given that: 1 millisecond = 1 microsecond = 1 nanosecond =	10 ⁻³ seconds 10 ⁻⁶ seconds 10 ⁻⁹ seconds	1 centimeter 1 micron 1 Angstrom	= 10^{-2} meters = 10^{-6} meters = 10^{-10} meters	
	Which of the following	g represents the greatest s	peed?		
	(A) 1 meter/second(C) 1 Angstrom/nand	osecond	(B) 1 micron/millisec(D) 1 micron/nanose	ond cond	