“Sequences of Generalized Bounded Variation,” by Robert Kantrowitz ’82, the Marjorie and Robert W. McEwen Professor of Mathematics and Statistics, was recently published in the journal International Mathematical Forum.
The article focuses on linear spaces of sequences that represent discretizations of spaces of functions of generalized bounded variation on a compact interval of the real line. Kantrowitz said the development is motivated by, and parallels, some of the work done in the last 140 years to extend French mathematician Camille Jordan’s original concept of functions of bounded variation.
Kantrowitz also discusses the stability of the sequence spaces under pointwise multiplication, as well as equipping the spaces with a canonical algebra norm, in the article.